Multistate molecular information storage using S-acetylthio-derivatized dyads of triple-decker sandwich coordination compounds

Author:

Lysenko Andrey B.1,Malinovskii Vladimir L.1,Padmaja Kisari1,Wei Lingyun2,Diers James R.2,Bocian David F.1,Lindsey Jonathan S.1

Affiliation:

1. Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA

2. Department of Chemistry, University of California, Riverside, California 92521-0403, USA

Abstract

An approach toward molecular information storage employs redox-active molecules attached to an electroactive surface. The chief advantages of such molecular capacitors include higher charge density and more versatile synthetic design than is afforded by typical semiconductor charge-storage materials. An architecture containing two triple-decker sandwich coordination complexes and an S-acetylthiomethyl-terminated tether has been designed for multibit storage. Each triple decker is composed of two phthalocyanines, one porphyrin, and two europium atoms. The oxidation potentials of each triple decker are tuned through the use of different substituents on the phthalocyanines (t-butyl, methyl, H ) and porphyrins (pentyl, p-tolyl). Interleaving of the four cationic oxidation states of each triple decker potentially affords eight distinct oxidation states. Two dyads were examined in solution and in self-assembled monolayers (SAMs) on a Au surface. One dyad exhibited eight distinct states in solution and in the SAM, thus constituting a molecular octal counter. The potentials ranged from −0.1-+1.3 V in solution and +0.1-+1.6 V in the SAM. Taken together, this approach provides a viable means of achieving multibit information storage at relatively low potential.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3