Electrochemical dioxygen reduction catalyzed by a (nitro)cobalt(perfluorophthalocyanine) complex and the possibility of a peroxynitro complex intermediate

Author:

Goodwin John A.1,Agbo Johnson1,Zuczek Justin1,Samuel Auquilla1,Aslund Tyler H.1,Tuley Leanne R.1,Simmons Johnathan A.1,Kimble Robert J.1,Magee Erin1,Creager Stephen2,Shetzline Jamie2

Affiliation:

1. Coastal Carolina University, Department of Chemistry and Physics, P.O. Box 261954, Conway, South Carolina 29526, USA

2. Clemson University, Department of Chemistry, Clemson, South Carolina 29634, USA

Abstract

The (nitro)([Formula: see text],[Formula: see text]-dimethyl-4-aminopyridine) complex of perfluorinated cobalt(III) phthalocyanine Co(III)F16Pc(Me2Npy)(NO[Formula: see text] catalyzes the electrochemical oxygen reduction reaction (ORR) in pH 4.0, 7.0, and 10.0 buffer and 0.05 M sulfuric acid solution when deposited on a glassy carbon electrode. Cyclic voltammetry (CV), rotating disk electrode voltammetry (RDE), and rotating ring-disk electrode voltammetry (RRDE) have been used to determine the reduction product as hydrogen peroxide although in concentrations too small to observe by qualitative methods such as oxidation of NaI in solution. The dependence of the values of the peak potentials for the reduction on the pH of the solution and the -log[Me2Npy] are consistent with protonation up to pH 7.6 and pyridine ligand loss during the reduction. The addition of nitrite at 0.1 and 1 M to pH 7.0 solutions in contact with films of CoF16Pc on the glassy carbon electrode decreases the ORR current and shifts the peak potential of the ORR from -0.21 V vs. NHE to -0.19 V vs. NHE. The addition of nitrite at 0.1 and 1 M to films of Co(III)F16Pc(Me2Npy)(NO[Formula: see text] on glassy carbon, however, has no effect on either the current or the potential. While the electrochemical evidence for this proposal is not definitive, modeling has been used to examine the center of reduction in the alternative mechanisms by evaluation of the LUMOs of the hypothetical intermediates in both closed and open shell cases. The formation of five-coordinate Co(II)F16Pc(NO) is proposed to occur initially in the reduction mechanism. It is also possible that O2 reduction takes place at the NO ligand center by way of a nitrogen-bound peroxynitrite intermediate. The [Formula: see text] ligand appears to remain bound during the ORR. Direct coordination of O2 to the metal center requiring a six-coordinate species, Co(III)F16Pc(O[Formula: see text](NO[Formula: see text], Co(II)F16Pc(O[Formula: see text](NO) or [Co(II)F16Pc(O[Formula: see text](NO[Formula: see text]][Formula: see text] and has been considered in DFT modeling studies. The instability of the two-electron reduced, protonation species, [Co(I)F16Pc(NO2OH)][Formula: see text] in its loss of peroxynitrous acid suggests that the reduction of O2 may occur by two one-electron reduction steps rather than a two-electron step.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3