The photodynamic therapy activity of 3-(1-hydroxylethyl)-3-devinyl-131-(dicyanomethylene) pyropheophorbide-a methyl ester (HDCPPa) against HeLa cell in vitro

Author:

Li Wenting1,Wang Qi1,Tan Guanghui12,Zhang Hongyue1,Cheng Jianjun1,Wang Zhiqiang1,Jin Yingxue1

Affiliation:

1. College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China

2. Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province. Harbin Normal, University, 150025 Harbin, China

Abstract

Photodynamic therapy (PDT) has been a potential therapeutic method for the treatment of various cancers, with photosensitizer being the key component in photodynamic therapy. In this paper, we prepared a photosensitizer 3-(1-hydroxylethyl)-3-devinyl-131-(dicyanomethylene) pyropheophorbide-a methyl ester (HDCPPa), based on chlorophyll pyropheophorbide-a according to the previous report, and systematically investigated the fluorescence emission spectrum and ultraviolet absorption spectrum HDCPPa has long absorption in the near-infrared spectral region (around 695 nm). The excitation wavelength and the emission wavelength were 415 nm and 699 nm respectively in dichloromethane, 1O2 quantum yield was 63.5%. HDCPPa also had high stability in PBS solution, DMEM cell culture medium and normal saline (NS) in vitro. After irradiation by the light of 675 nm (10 J.cm[Formula: see text]) for 70 min the degradation rate of HDCPPa was 12.5%, which indicated that the target compound showed high stability under light. The in vitrophotodynamic therapy activities against HeLa cells were also studied, which showed that HDCPPa had extremely low dark toxicity but great phototoxicity, and the cell viability is lower than 10% under the light irradiation of 675 nm (10 J.cm[Formula: see text]). Moreover, HDCPPa can quickly enter the cell after being incubated with HeLa cells in less than 30 min. We also evaluated the mechanism of the photochemical reaction, which had proved that Type II is primarily responsible for the cell death. Therefore HDCPPa could serve as a very promising photosensitizer for photodynamic therapy.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3