Spectral properties and photophysical processes of meso styryl substituent triphenylamine-porphyrin derivatives

Author:

Wang Rong1,Gong Kun1,Liu Ruihong1,Liu Dongzhi1,Li Wei1,Wang Lichang2,Zhou Xueqin1

Affiliation:

1. School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin, 300072, China

2. Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA

Abstract

This work reports the synthesis and spectral properties of meso-styryl substituted triphenylamine-porphyrin derivatives, mP-BLP, mPPC-BLP and their metal coordinated complexes. The photophysical processes were analyzed and related to the meso-groups and centre metal ions. The meso styryl substituent in mP-BLP and its complexes are able to extend the conjugation of porphyrin macrocycle to the styryl motif, increase light harvesting ability and accelerate intersystem crossing (ISC) process. A large dihedral angle between the meso-styryl group and porphyrin macrocycle would prohibit the delocalization of electrons between the two motifs and induce the occurrence of solvation decay process. Increasing the electron-withdrawing ability of meso-substituent via additional pyrimidine group could promote the photoinduced intramolecular electron transfer (PIET) process for mPPC-BLP. Moreover, the coordination of metal ions would significantly accelerate the photophysical processes of both mP-BLP and mPPC-BLP. Specially, the Mg[Formula: see text] is helpful to the ISC process whereas Zn[Formula: see text] is adverse to the ISC process, while Cu[Formula: see text] would boost the non-radiation process. Furthermore, Zn[Formula: see text] is able to promote the PIET process of mPPC-BLP, exhibiting the highest charge-separated tendency among these porphyrins. mPPC-ZnBLP-based dye-sensitized solar cell (DSSC) devices show the highest power conversion efficiency (PCE). The photovoltaic performance of DSSC devices reveals the significancy of the photoinduced charge-separated tendency for the design of porphyrin sensitizers.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3