Decreasing the aggregation and ligand redox potential of metallophthalocyanines through branched ether functionalization

Author:

McKearney Declan1,Zhou Wen1,Scollon Myles1,Furuyama Taniyuki2,Williams Vance E.1,Leznoff Daniel B.1

Affiliation:

1. Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6, Canada

2. Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan

Abstract

The addition of ether functional groups to a metallophthalocyanine ring is known to significantly decrease the oxidation potentials of the ring. In this light, the impact of the branching of alkyl-ether groups on the electronic properties was investigated via the synthesis of non-peripheral ([Formula: see text]-substituted n-butyl (1), iso-butyl (2) and sec-butyl (3) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanines, in conjunction with Co and Cu metal centers. From 1 to 3 the first and second ring-based oxidation potentials were decreased by 70 mV and 110 mV respectively both for Cu and Co-containing complexes; the UV-visible Q-band maxima only changed by 4-8 nm, consistent with the destabilization of both the HOMO and LUMO, as confirmed by TD-DFT calculations. The reversibility of both redox couples was improved via branching (3) for the Co complexes. All six complexes were structurally characterized, with varying levels and types of ring distortions. All molecules show 1-D supramolecular stacking, but for n-butoxy 1Co an intermolecular Co-O interaction aligns the molecular stacks, while for sec-butoxy 3Co only [Formula: see text]-[Formula: see text] stacking of the Pc-ring was present. Both 3Co and 3Cu were ring-oxidized at lower potentials than 1Co and 1Cu, and the increased steric bulk from the branched ether chains prevented the overlap of their N8C8 inner rings.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3