Fast, facile, base-free microwave-assisted metallation of bacteriochlorophylls and corresponding high yield synthesis of TOOKAD

Author:

Cheng Miffy. H. Y.1,Cevallos Alberto12,Rajora Maneesha A.13,Zheng Gang1234

Affiliation:

1. Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada

2. Institute of Medical Science, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada

3. Institute of Biomedical Engineering, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada

4. Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada

Abstract

Naturally-derived metallo-bacteriochlorophylls have attracted much attention since their clinical approval for cancer photodynamic therapy. Their therapeutic properties are rooted in the metal complexation of bacteriochlorophylls, which endows them with optical properties favourable for biophotonic and biomedical applications, including near-infrared light-activated reactive oxygen species generation at therapeutic levels. Despite these advantages, the utility of these chromophores has been limited by synthetic challenges associated with bacteriochlorophyll metallation; specifically, a slow reaction rate and necessity of complex purification procedures remain barriers towards metalated bacteriochlorophyll synthesis. Here, these limitations are overcome through the development of a new fast, facile, efficient, base-free microwave heating metallation method for the synthesis of a series of metallo (Pd, Cu, Zn, Cd, Sn, In, Mn, Co) bacteriopyropheophorbides. The preparation and structural and optical spectral characterization of these complexes are presented. This microwave-enabled synthetic method is then applied to generate the clinical photosensitizer agent Pd-bacteriopheophorbide (TOOKAD) effectively and efficiently, followed by validation of its metallation-enhanced ROS generation.

Funder

the NanoMedicines Innovation Network

the Canadian Institutes of Health Research

the National Sciences and Engineering Research Council of Canada

the Canada Foundation for Innovation

the Canada Research Chairs Program

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3