Affiliation:
1. Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
Abstract
The metalation chemistry of the phlorin, which is a non-aromatic tetrapyrrole macrocycle containing a single sp3-hybridized meso-carbon has remained underdeveloped, as compared to that of more traditional tetrapyrroles such as porphyrins, corroles and phthalocyanines. There have been few prior efforts to prepare metallophlorins, and those that have been reported have relied on either reduction or nucleophilic attack of parent metalloporphyrins, rather than direct metalation of freebase phlorin constructs. In this work, an alternate synthetic approach for preparation of gold(III) phlorin complexes that involves the first direct metalation of two different freebase phlorin derivatives (3H(Phl[Formula: see text] and 3H(Phl[Formula: see text] with AuBr3 to produce the stable and fully isolable gold(III) phlorin complexes Au(Phl[Formula: see text] and Au(Phl[Formula: see text] is reported. The first structural characterization of a metallophlorin bearing geminal dimethyl substituents at the sp3-hybridized meso-carbon via X-ray crystallography is also reported. In addition to the preparation of Au(Phl[Formula: see text] and Au(Phl[Formula: see text], the UV-vis absorption and redox properties of these two gold(III) phlorins in comparison to those of their freebase homologues is also detailed. Notably, the metallophlorins are characterized by panchromatic absorbance profiles and intense and broad bands that span the long-visible and into the near-IR regions, as well as two fully reversible oxidation and reduction waves as probed by cyclic voltammetry. Finally, the chlorination of Au(Phl[Formula: see text] using PhI(Cl[Formula: see text] was probed and it was found that this regioslective reaction generates monochlorinated (Au(Phl[Formula: see text]Cl)) and dichlorinated (Au(Phl[Formula: see text]Cl[Formula: see text] products, which were both structurally characterized by X-ray crystallography.
Funder
National Science Foundation
EPSCoR and Catalysis
Publisher
World Scientific Pub Co Pte Lt
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献