Photoinduced electron transfer in a directly linked meso-triphenylamine zinc porphyrin-quinone dyad

Author:

Wijesinghe Channa A.1,Niemi Marja2,Tkachenko Nikolai V.2,Subbaiyan Navaneetha K.1,Zandler Melvin E.1,Lemmetyinen Helge2,D'Souza Francis1

Affiliation:

1. Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA

2. Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland

Abstract

A multimodular donor-acceptor system composed of three triphenylamine entities at the meso-positions of a zinc porphyrin macrocycle and a quinone at the fourth meso-position was newly synthesized and characterized. The triphenylamine entities acted as energy transferring antenna units in addition of improving the electron donor ability of the zinc porphyrin. Appreciable electronic interactions of the triphenylamine and quinone entities with the porphyrin π-system were observed. In agreement with the spectral and electrochemical results, the computational studies performed by the DFT B3LYP/3-21G(*) method revealed delocalization of the frontier HOMO over the triphenylamine and the porphyrin macrocycle while the LUMO to be fully localized over the quinone entity. Free-energy calculations suggested photoinduced electron transfer from the singlet excited zinc porphyrin to the directly linked quinone to be exothermic and this was experimentally confirmed by the time-resolved pump probe and up-conversion techniques. In the investigated system, the ET reaction path was found to depend upon the excitation wavelength. That is, when Zn porphyrin was predominantly excited, a rapid charge separation followed by equally fast charge recombination was observed. However, excitation of the peripheral TPA substituents resulted in an extremely long-lived CS state with triplet spin character via the TPA triplet and Zn porphyrin triplet states.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3