Porphyrin hexamer with a triphenylene core unit: Spectroscopy, electrochemistry and controllable supramolecular formation

Author:

Sakai Hayato1,Rabbani Mohammad Gulam2,Hasobe Taku13

Affiliation:

1. Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan

2. School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi 923-1292, Ishikawa, Japan

3. PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, Japan

Abstract

A series of free-base and zinc porphyrin hexamers, where six porphyrin units are linked to a triphenylene core through amide or ester linkage, was designed and synthesized in an effort to study their spectroscopic and electrochemical properties, and aggregate formation. The distances between triphenylene core and porphyrin moieties are tuned by changing the lengths of spacer alkyl chains. The absorption spectral studies indicates that the porphyrin units in a hexamer behave like monomeric porphyrins, while a strong fluorescence quenching of triphenylene core was observed suggesting the deactivation of the excited state of triphenylene. The redox potentials of porphyrin units in a hexamer were estimated by differential pulse voltammetry (DPV). These values are very similar to those of the corresponding monomer. Consequently, absorption and electrochemical data demonstrate that six porphyrin units of (H2PAC5)6TPh behave like monomers independently in the ground state. The hexamers undergo supramolecular aggregation spontaneously in different fashions based on the solvent systems as well as spacer lengths. Highly ordered and aligned monolayer-based patterns are formed when hexamers are allowed to aggregate from toluene solution onto carbon-coated copper films. In contrast, hexamers undergo aggregation to nanoparticles in toluene/acetonitrile mixed solvent system and the particle sizes increase with increasing the spacer alkyl chain lengths.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3