A density functional investigation of hydrogen peroxide activation by high-valent heme centers: implications for the catalase catalytic cycle

Author:

Silaghi-Dumitrescu Radu1

Affiliation:

1. "Babes-Bolyai" University, 11 Arany Janos str, Cluj-Napoca RO-400028, Romania

Abstract

Catalases employ a tyrosinate-ligated ferric heme in order to catalyze the dismutation of hydrogen peroxide to O2 and water. In the first half of the catalytic cycle, H2O2 oxidizes Fe(III) to the formally Fe(V) state commonly referred to as Compound I. The second half of the cycle entails oxidation of a second hydrogen peroxide molecule by Compound I to dioxygen. The present study employs density functional (DFT) calculations to examine the nature of this second step of the catalatic reaction. In order to account for the unusual choice of tyrosinate as an axial ligand in catalases, oxidation of hydrogen peroxide by an imidazole-ligated Compound I is also examined, bearing in mind that imidazole-ligated hemoproteins such as myoglobin or horseradish peroxidase tend to display little, if any, catalatic activity. Furthermore, in order to gauge the importance of the cation radical of Compound I in peroxide activation, the performance of Compound II (the one-electron reduced version of Compound I, formally Fe(IV) ), is also examined. It is found that hydrogen peroxide oxidation occurs in a quasi-concerted manner, with two hydrogen-atom transfer reactions, and that the tyrosinate ligand is in no way required at this stage. We propose that the role of the tyrosinate is purely thermodynamic, in avoiding accumulation of the much less peroxide-reactive ferrous form in vivo – all in line with the predominantly thermodynamic role of the cysteinate ligands in enzymes such as cytochromes P450.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3