Syntheses and photodynamic properties of glucopyranoside-conjugated indium(III) porphyrins as a bifunctional agent

Author:

Nakai Misaki1,Maeda Tomohiro1,Mashima Tsuyoshi1,Yano Shigenobu23,Sakuma Shiho4,Otake Eriko4,Morita Akimichi4,Nakabayashi Yasuo1

Affiliation:

1. Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita-shi, Osaka 564-8680, Japan

2. Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

3. Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto-daigaku Katsura, Kyoto 615-8520, Japan

4. Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan

Abstract

The glucopyranoside-conjugated porphyrins, H 2 TPP {p- O -( CH 2)2- O - OAcGlc } (1), [ InTPP {p- O -( CH 2)2- O - OAcGlc }] NO 3 (2), H 2 TPP {p- O -( CH 2)2- O - Glc } (3), [ InTPP {p- O -( CH 2)2- O - Glc ]- NO 3 (4) and ZnTPP {p- O -( CH 2)2- O - OAcGlc } (5) were synthesized, and characterized by 1 H NMR, 13 C NMR, ESI-MS, UV-vis spectroscopies and elemental analyses. In the 1 H NMR spectrum of 2, two sets of signals were observed for H -atoms of the phenyl group of porphyrin, indicating that 2 has the axial chirality due to a NO 3 ion coordinating to the indium atom. Abilities of the singlet oxygen production of these porphyrins, investigated by using 1,3-diphenylisobenzofuran (DPBF) as a quencher, were higher than those of the free-based and zinc porphyrins, reflecting the heavy atom effect. The photodynamic properties of these porphyrin derivatives were investigated against COLO 679. All of the glucopyranoside-conjugated porphyrins exhibited the high photocytotoxicity compared with Laserphyrin®. Above all, 4 exhibited the highest photocytotoxicity, coinciding with the high abilities of this complex for the singlet oxygen production and the cell permeability.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3