Photo-induced intramolecular electron transfer in phenoxazine-phthalocyanine donor-acceptor systems

Author:

Srivishnu K.S.12,Naresh Madarapu1,Laxmikanth Rao J.3,Giribabu Lingamallu12

Affiliation:

1. Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India

2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India

3. Catalysis & Fine Chemical Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India

Abstract

Donor-Acceptor (D-A) systems based on phenoxazine – phthalocyanine (PXZ-Pc) and phenoxazine – zinc phthalocyanine (PXZ-ZnPc) have been designed and synthesized. Both D-A systems are characterized using various spectroscopic and electrochemical techniques including in-situ methods. Optical absorption studies suggest that both Soret and Q bands of these D-A systems are hypsochromically and bathochromically shifted, when compared to its individual constituents. The study supported by theoretical calculations shows clearly that there exists a negligible electronic communication in the ground state between donor phenoxazine and acceptor phthalocyanine. However, attractively, both D-A systems exhibit noteworthy fluorescence emission quenching (90–99%) of the phthalocyanine emission compared to its reference compounds. The fluorescence emission quenching featured at the excited-state intramolecular photoinduced electron transfer from ground state of phenoxazine to the excited state of phthalocyaine/zinc phthalocyanine. The rates of electron-transfer ([Formula: see text] of these D-A systems are found in the range of 5.7 × 108 to 2.8 × 109 s[Formula: see text] and are according to solvent polarity.

Funder

CSIR-IICT

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3