Synthesis and characterization of graphene oxide supported cobalt (II) tetrasulfophthalocyanine as an efficient heterogeneous nanocatalyst for mercaptans oxidation from gasoline

Author:

Motahari Kazem1,Ahmadi Hojatollah1

Affiliation:

1. Department of Chemical Engineering, Arak University, Arak, 38156-8-8349, Iran

Abstract

In the present study, graphene oxide-supported cobalt (II) tetrasulfophthalocyanine (CoTsPc-GO) was synthesized using the incipient wetness impregnation assisted [Formula: see text]–[Formula: see text] assembling method. Applications for this material were investigated for ethyl mercaptan, [Formula: see text]-propyl mercaptan and [Formula: see text]-butyl mercaptan oxidation from fluid catalytic cracking (FCC) gasoline in a fixed bed reactor. The synthesized CoTsPc-GO catalysts were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDAX), thermogravimetric and differential thermal analysis (TGA-DTA), inductively coupled plasma optical emission spectroscopy (ICP-OES), and transmission electron microscopy (TEM). The effect of cobalt (II) tetrasulfophthalocyanine (CoTsPc) content (0–0.34 g), catalyst dosage (0.02–0.12 g) and temperature (30–40∘ C) on the performance of CoTsPc-GO catalysts were investigated during the Merox process. The stability and reusability of CoTsPc-GO catalyst for mercaptans oxidation were also tested. The obtained results revealed that the maximum mercaptan oxidation during the Merox process was obtained in CoTsPc-GO of 0.34 g, catalyst content of 0.1 g and a temperature of 40∘ C with ethyl mercaptan, [Formula: see text]-propyl mercaptan and [Formula: see text]-butyl mercaptan conversions of 99.9, 98.5 and 97.0%, respectively. The potential of CoTsPc-GO catalyst was investigated for further mercaptans oxidation. The results were compared to those obtained with an industrial impregnated active charcoal catalyst and a CoPc catalyst. The obtained results demonstrated the higher capability of CoTsPc-GO catalyst for mercaptans oxidation from FCC gasoline.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3