Photoconductive behavior of binary porphyrin crystalline assemblies

Author:

Borders Bryan1,Adinehnia Morteza1,Rosenkrantz Naomi1,van Zijll Marshall2,Hipps K. W.1,Mazur Ursula1

Affiliation:

1. Washington State University, Department of Chemistry and Materials Science and Engineering Program, PO Box 644630, Pullman, WA 99164-4630, USA

2. University of California, Davis, Department of Physics, One Shields Avenue, Davis, CA 95616, USA

Abstract

The mechanism of photoconductivity in a crystalline photoconductor synthesized from 1:1 ratio of meso-tetra(4-pyridyl)porphyrin (TPyP) and meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) ionic tectons was examined. The rod-like crystals of TPyP:TSPP insulate in the dark but become photoconducting on illumination and a portion of the photoinduced current persists after the laser light is turned off. This persistent photoconductivity (PPC) is investigated as a function of laser illumination wavelength, laser power, and sample temperature. The primary charge carriers in the TPyP:TSPP upon photoexcitation are electrons and the charge recombination mechanism follows monomolecular kinetics. The number of electrons contributing to the photocurrent is directly proportional to the number of photons absorbed thus, the mechanisms of the photoconductivity resulting from excitations within the Soret band and the Q-band are the same. The PPC is interpreted to be the result of the formation of photoinduced metastable defects that allow for Miller–Abrahams-like hopping conductivity. The TPyP:TSPP has an incommensurately modulated crystal lattice and its proposed model structure is based on both ionic and neutral porphyrin tectons. The thermogravimetric analysis shows that the porphyrin crystals undergo dehydration on heating (˜50 C) by losing water molecules located in the crystalline channels. Temperature dependent XRD indicates that dehydration causes irreversible changes to the crystal structure. The loss of crystallinity observed with heating the TPyP:TSPP crystals above 90 C causes approximately 25% loss in photoconductivity but has little effect on the lifetime associated with the persistent photoconductivity.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3