Affiliation:
1. Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
Abstract
Biopyrrin pigments, which result from the degradation of heme in biological settings, feature three or two pyrrole rings and characteristic pyrrolin-2-one termini. These scaffolds serve as redox-active ligands and electron reservoirs in coordination compounds. Tripyrrin-1,14-dione coordinates divalent transition metals as a dianionic ligand hosting a delocalized radical. Herein, we report the synthesis and characterization of palladium(II) and platinum(II) tripyrrindione complexes featuring a primary amine (i.e., aniline, tert-butylamine, 1,2-ethylenediamine) at the fourth coordination site within square planar geometries. Interligand hydrogen-bonding interactions are observed between the coordinated amine and the carbonyl groups on the tripyrrindione scaffold. Notably, 1,2-ethylenediamine is employed to link two Pt(II) tripyrrindione complexes. As revealed by optical absorption and electron paramagnetic resonance (EPR) spectroscopy, all resulting complexes present ligand-based radicals that are stable at room temperature and when exposed to air. Spin pairing through multicenter interactions leads to [Formula: see text]-dimerization of the tripyrrindione radicals and a decrease in the EPR signal at low temperatures. Electrochemical measurements indicate that the ligand system undergoes quasi-reversible one-electron oxidation and reduction, thus confirming the ability of tripyrrindione to form square planar complexes in three different redox states.
Funder
the National Science Foundation
Publisher
World Scientific Pub Co Pte Ltd
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献