Great adaptability of the heme-cysteinate monooxygenases family to very diverse substrates and sophisticated reactions

Author:

Mansuy Daniel1,Lafite Pierre1

Affiliation:

1. UMR 8601, Université René Descartes Paris 5, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France

Abstract

Heme-cysteinate proteins, such as cytochromes P 450( CYPs ) and nitric oxide synthases (NOSs), catalyze the monooxygenation of a huge number of substrates with very diverse structures. The ability of CYPs to oxidize a myriad of xenobiotics, in order to facilitate their elimination, plays a key role in the adaptation of aerobic organisms to their always changing chemical environment. Moreover, some members of the CYP superfamily and the NOSs are involved in the biosynthesis of key biological endogenous molecules, such as estrogens or NO, through the catalysis of highly sophisticated and regulated reactions. How can proteins using the same catalytic heme-cysteinate cofactor and mechanism of dioxygen activation oxidize such diverse and always changing substrates and catalyze different, sometimes very sophisticated reactions? Recent data on the first X-ray structures of mammalian cytochrome P 450-substrate complexes and on the mechanism of NO-synthases has permitted an understanding of this"double adaptation" of heme-cysteinate monooxygenases towards very diverse substrates and different reactions. These data show that cytochromes P 450 involved in the metabolism of xenobiotics are able to oxidize very different substrates by offering a great choice of very diverse and malleable active sites. They also show that heme-cysteinate monooxygenases are able to catalyze special, sophisticated reactions, such as the selective oxidation of L-arginine to NO, by using supplementary cofactors adapted for the required catalysis.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3