Affiliation:
1. School of Chemistry and Chemical Engineering, Institute of Applied Chemistry, Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji’an, Jiangxi 343009, P. R. China
Abstract
A novel 5,10,15,20-tetrakis-(4-(triazol-1-yl)phenyl)porphyridine compound, namely, Zn[5,10,15,20-tetrakis-(4-(triazol-1-yl)phenyl)porphyridine] (hereafter tagged as 1) was synthesized through a solvothermal reaction with mixed solvents at 413 K. The X-ray single-crystal structure of compound 1 is featured as a two-dimensional (2D) layer-like structure with the zinc ion located at the center of the 5,10,15,20-tetrakis-(4-(triazol-1-yl)phenyl)porphyridine. The macrocycle of the 5,10,15,20-tetrakis-(4-(triazol-1-yl)phenyl)porphyridine is coplanar. The zinc ion has six coordination and coordinates with three porphyridines. The photoluminescence spectra of compound 1 with DMF solution reveal that it shows upconversion red photoluminescence. The time-dependent density functional theory (TDDFT) calculation confirms that this upconversion red photoluminescence originated from the MLCT process (metal to ligand charge transfer). The CCT (Correlated Color Temperature) is 2200 K and the CIE (Commission Internationale de I’Éclairage) chromaticity coordinate is (0.6311, 0.3595) for compound 1. The UV-vis diffuse reflectance curve measured with a solid state sample reveals that compound 1 possesses a 2.75 eV band gap.
Funder
the National Natural Science Foundation of China
the Science and Technology Project of Jiangxi Provincial Department of Education
Publisher
World Scientific Pub Co Pte Ltd