Improved Moving Least Square-Based Multiple Dimension Decomposition (MDD) Technique for Structural Reliability Analysis

Author:

Rathi Amit Kumar1,Chakraborty Arunasis2ORCID

Affiliation:

1. Department of Civil and Infrastructure Engineering, Indian Institute of Technology, Jodhpur, Jodhpur, Rajasthan 342037, India

2. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Abstract

This paper presents the state-of-the-art on different moving least square (MLS)-based dimension decomposition schemes for reliability analysis and demonstrates a modified version for high fidelity applications. The aim is to improve the performance of MLS-based dimension decomposition in terms of accuracy, number of function evaluations and computational time for large-dimensional problems. With this in view, multiple finite difference high dimension model representation (HDMR) scheme is developed. This anchored decomposition is implemented starting from an initial reference point and progressively evolving in successive iterations. Most probable point (MPP) of failure is identified in every iteration and is used as the reference point for the next decomposition until it converges. Hermite polynomials in MLS framework are used between the support points for efficient interpolation. The support points are generated sequentially using multiple sparse grids based on the Clenshaw–Curtis scheme. Once the global response surface is constructed using the support points generated in each iteration, importance sampling is employed for reliability analysis. Six different benchmark problems are solved to show its performance vis-à-vis other methods. Finally, reliability-based design of a composite plate is demonstrated, clearly showing the advantage and superiority of the proposed improvements in MLS-based multiple dimension decomposition (MDD).

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3