Numerical Simulation of Three-Dimensional Violent Free Surface Flows by GPU-Based MPS Method

Author:

Chen Xiang1,Wan Decheng1

Affiliation:

1. State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, P. R. China

Abstract

The Moving Particle Semi-implicit (MPS) method has been widely used in the field of computational fluid dynamics in recent years. However, the inefficient drawback of MPS method limits its three-dimensional (3D) large-scale applications. In order to overcome this disadvantage, a novel acceleration technique, graphics processing unit (GPU) parallel computing, is applied in MPS. Based on modified MPS method and GPU technique, an in-house solver MPSGPU-SJTU has been developed by using Compute Unified Device Architecture (CUDA) language. In this paper, 3D dam break and sloshing, two typical violent flows with large deformation and nonlinear fragmentation of free surface are simulated by MPSGPU-SJTU solver. In dam break case, the results of fluid flied, water front, wave height and impact pressure by GPU simulation are compared to those by CPU calculation, experimental research, Smooth Particle Hydrodynamics (SPH) and Boundary Element Method (BEM) simulations. And the comparison of fluid field and impact pressure among GPU, CPU and experiment is made in sloshing flow. The accuracy of GPU solver is verified by these comparisons. Moreover, the computation time of every part in each calculation step is compared between GPU and CPU solvers. The results show that computational efficiency is improved dramatically by employing GPU acceleration technique.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3