Numerical Simulation of a 2D Layered Anode for use in Lithium-Ion Batteries

Author:

Galashev Alexander12ORCID

Affiliation:

1. Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Academic Str. 20, Yekaterinburg 620990, Russia

2. Ural Federal University Named After, the First President of Russia B. N. Yeltsin, Mira Str., 19, Yekaterinburg 620002, Russia

Abstract

An important technological problem is solved by numerical methods. Doping of silicene with phosphorus allows changing the morphology of the walls of the silicene channel without reducing their strength. The structure of lithium packings in the channels is studied in detail. The distribution of normal stresses in the walls of the channel before lithium intercalation and after complete lithium filling is determined. The calculated densities of electronic states allow us to conclude that both doped and undoped silicene on a graphite substrate become electrically conductive. The studied two-dimensional silicene can be used as an anode for next-generation lithium-ion batteries.

Funder

Ministry of Education and Science of Russian Federation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3