Coupling BEM and the Local Point Interpolation for the Solution of Anisotropic Elastic Nonlinear, Multi-Physics and Multi-Fields Problems

Author:

Njiwa Richard Kouitat1ORCID,Pierson Gael1,Voignier Arnaud1

Affiliation:

1. Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, 2 Allée André Guinier, BP 50840, 54011 Nancy Cedex, France

Abstract

The pure boundary element method (BEM) is effective for the solution of a large class of problems. The main appeal of this BEM (reduction of the problem dimension by one) is tarnished to some extent when a fundamental solution to the governing equations does not exist as in the case of nonlinear problems. The easy to implement local point interpolation method applied to the strong form of differential equations is an attractive numerical approach. Its accuracy deteriorates in the presence of Neumann-type boundary conditions which are practically inevitable in solid mechanics. The main appeal of the BEM can be maintained by a judicious coupling of the pure BEM with the local point interpolation method. The resulting approach, named the LPI-BEM, seems versatile and effective. This is demonstrated by considering some linear and nonlinear elasticity problems including multi-physics and multi-field problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3