Error Estimation of Polynomial Chaos Approximations in Transient Structural Dynamics

Author:

Dao T. D.1,Serra Q.1,Berger S.1,Florentin E.1ORCID

Affiliation:

1. INSA Centre Val de Loire, Université d’Orléans, Université de Tours, Laboratoire de Mécanique Gabriel Lamé, 88 Boulevard Lahitolle, F-18022 Bourges, France

Abstract

Usually, within stochastic framework, a testing dataset is used to evaluate the approximation error between a surrogate model (e.g., a polynomial chaos expansion) and the exact model. We propose here another method to estimate the quality of an approximated solution of a stochastic process, within the context of structural dynamics. We demonstrate that the approximation error is governed by an equation based on the residue of the approximate solution. This problem can be solved numerically using an approximated solution, here a coarse Monte Carlo simulation. The developed estimate is compared to a reference solution on a simple case. The study of this comparison makes it possible to validate the efficiency of the proposed method. This validation has been observed using different sets of simulations. To illustrate the applicability of the proposed approach to a more challenging problem, we also present a problem with a large number of random parameters. This illustration shows the interest of the method compared to classical estimates.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3