Different Types of Constitutive Parameters Red Blood Cell Membrane Based on Machine Learning and FEM

Author:

Wei Xinyu1,Sang Jianbing1ORCID,Tian Chuan2,Sun Lifang1,Liu Baoyou1

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China

2. School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD, Australia

Abstract

Research on mechanical response of single red blood cells (RBCs) to mechanical stimuli and the complex material properties of erythrocyte membranes is significant. This work proposes a novel procedure that combines nonlinear finite element method and two machine learning algorithms including Two-Way Deepnets and XGboost together with experiments to identify the hyper elastic material parameters of erythrocyte membranes. Finite element models were established to simulate the stretching process of erythrocyte optical tweezers with different constitutive material parameters from three constitutive models. And the results from the finite element analysis were carried out to generate the training sets for the neural networks. In order to validate the predictions in great detail, the finite element response curves based on the three groups of predicted constitutive parameters are compared with the experimental data. The comparison results show that the Two-Way Deepnets model has performed better efficiency and accuracy and that Reduced Polynomial can describe more precisely the hyperelastic properties of the erythrocyte membrane in the range of experimentally obtained characteristics of single RBCs. This research provides new insights into the identification of constitutive parameters of biological cell membranes, which is crucial for the future research on mechanical mechanisms of the biological cells.

Funder

Natural Science Foundation of Hebei Province

Tianjin Excellent Special correspondent Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3