Investigations of the Hydraulic Characteristics of Stilling Basin with Baffle-Blocks Using an Integrated SPH Method

Author:

Ma X. J.1,Yan Y. L.2,Li G. Y.1,Geni M.3,Wang M.1

Affiliation:

1. College of Electrical Engineering, Xinjiang University, No. 1230 Yan’an Road, Urumqi, P. R. China

2. Xinjiang Electric Power Construction Co., Ltd., No. 200 Hengda Street, Changshun Middle Road, Urumqi, P. R. China

3. College of Mechanical Engineering, Xinjiang University, No. 1230 Yan’an Road, Urumqi, P. R. China

Abstract

The stilling basin has been one of the most powerful hydraulic structures for the dissipation of the flow energy. Meshfree and particle methods have special advantages in modeling incompressible flows with free surfaces. In this paper, an integrated smoothed particle hydrodynamics (SPH) method is developed to model energy dissipation process of stilling basins. The integrated SPH includes the kernel gradient correction (KGC) technique, the dynamic solid boundary treatment, [Formula: see text]-SPH model and density reinitialization. We first conducted the simulations of dam-breaking and hydraulic jump to validate the accuracy of the present method. The present simulation results agree well with the experimental observations and numerical results from other sources. Then the discharge process of stilling basin with baffle-blocks is simulated with the integrated SPH. It is demonstrated that the detailed discharge process can be well captured by this method. The energy dissipation effect of stilling basin could be significantly improved by the baffle-blocks. The structure and position of the baffle-block directly affect the energy dissipation effect, while the height of the baffle-block has big influence on the drainage capacity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Province

Funded by Scientific Research Program of the Higher Education Institution of Xinjiang

Foundation for the Author of National Excellent Doctoral Dissertation of the People's Republic of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3