Contact Analysis Within the Bi-Potential Framework Using Cell-Based Smoothed Finite Element Method

Author:

Chen Qianwei1,Li Yan1ORCID,Feng Zhiqiang12,Chen Huijian1

Affiliation:

1. School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, China

2. LMEE Univ-Evry, Université Paris-Saclay, Evry, France

Abstract

This paper presents a cell-based smoothed finite element method (CS-FEM) for solving two-dimensional contact problems with the bi-potential formulation. The contact force and the relative displacements on the contact surface are coupled with each other. The Uzawa algorithm, which is a local iterative technique, is used to solve the contact force. The classic Coulomb friction rule and a unilateral contact relationship are considered. There is no need to select any user-defined parameter in the whole process. Three contact states are investigated accurately, which can be stated as sticking, separating and sliding, respectively. The CS-FEM is performed with six different kinds of smoothing domains which are constructed by dividing the background element into different regions. Only boundary integrations instead of domain integral are required in the calculation, and no coordinate mapping is needed. Three numerical examples are presented to verify the effectiveness of the method. The effect of the friction coefficient for the contact is also investigated. All the obtained numerical solutions agree well with the reference values. The results produced by the CS-FEM are more accurate than those of the traditional FEM. Moreover, the CS-FEM can provide both an upper bound and a lower bound of the strain energy solutions while using different smoothing domains.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3