A Class of Novel Tetrahedron Elements with Curved Surfaces for Three-Dimensional Solid Mechanics Problems with Curved Boundaries

Author:

Wang C. Q.1,Yue J. H.1ORCID,Li Ming1

Affiliation:

1. Taiyuan University of Technology, Taiyuan, P. R. China

Abstract

Linear tetrahedral elements with four nodes (Te4) are currently the simplest and most widely used ones in the finite element (FE) developed for solving three-dimensional (3D) mechanics problems. However, the standard Te4 element cannot be used to simulate accurately the 3D problems with curved boundaries because of the flat surfaces. In this paper, we develop a set of new elements having curved surfaces to properly simulate the curved boundaries. At the same time, additional nodes are put on the curved boundaries to improve the accuracy of the approximation. These novel elements are defined as five-noded, six-noded, and seven-noded tetrahedron elements (Te5, Te6, and Te7) according to the number of the nodes in one element. Based on the Te4 FE mesh, a hybrid mesh can be conveniently built for 3D problems with curved boundaries, in which the standard Te4 elements are used for the interior elements, and Te5, Te6, and Te7 elements are used for the curved boundary elements. Compared with the standard FEM using Te4 elements, our hybrid mesh can significantly improve the accuracy of the solutions at the curved boundaries. Several solid mechanics problems are studied using the hybrid meshes to validate the effectiveness of the present new elements.

Funder

National Natural Science Foundation of China

project of senior foreign experts

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offset Trajectory Planning of Robot End Effector and its Jerk with Curvature Theory;International Journal of Computational Methods;2021-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3