A Novel Constitutive Parameters Identification Procedure for Hyperelastic Skeletal Muscles Using Two-Way Neural Networks

Author:

Li Yang1,Sang Jianbing1,Wei Xinyu1,Wan Zijian1,Liu G. R.2

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China

2. Department of Aerospace Engineering and Engineering, Mechanics, University of Cincinnati, Cincinnati, OH 45221-0070, USA

Abstract

Muscle soreness can occur after working beyond the habitual load, especially for people engaged in high-intensity work load. Prediction of hyperelastic material parameters is essentially an inverse process, which possesses challenges. This work presents a novel procedure that combines nonlinear finite element method (FEM), two-way neural networks (NNs) together with experiments, to predict the hyperelastic material parameters of skeletal muscles. FEM models are first established to simulate nonlinear deformation of skeletal muscles subject to compressions. A dataset of nonlinear relationship between nominal stress and principal stretch of skeletal muscles is created using our FEM models. The dataset is then used to establish two-way NNs, in which a forward NN is trained and it is in turn used to train the inverse NN. The inverse NN is used to predict the hyperelastic material parameters of skeletal muscles. Finally, experiments are carried out using fresh skeletal muscles to validate the predictions in great detail. In order to examine the accuracy of the two-way NNs predicted values against the experimental ones, a decision coefficient [Formula: see text] with penalty factor is introduced to evaluate the performance. Studies have also been conducted to compare the present two-way NNs approach with the other existing methods, including the directly (one-way) inverse problem NN, and improved niche genetic algorithm (INGA). The comparison results show that two-way NNs model is an accurate approach to identify the hyperelastic parameters of skeletal muscles. The present two-way NNs method can be further expanded to the predictions of constitutive parameters of other type of nonlinear materials.

Funder

Natural Science Foundation of China

Tianjin Excellent Special correspondent Project

Hebei Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3