A Multi-Dimensional Lagrange Multiplier Method to Identify the Load Distribution on 3D Special-Shaped Surface in the Strength Analysis of Aircraft Structure

Author:

Li Tong1ORCID,Mao Zebei1,Cai Yongming2,Wang Bo1,Chen Liang2

Affiliation:

1. Department of Engineering Mechanics, Dalian, University of Technology, Dalian, 116024, P. R. China

2. Shenyang Aircraft Design & Research Institute, Shenyang 110034, P. R. China

Abstract

In the process of aircraft structural design, the aerodynamic load and inertial load need to be distributed from single loading points to distributed finite element (FE) nodes before strength analysis. The most commonly used loading distribution method is a Multi-Point Arrangement (MPA) method, which introduces a one-dimensional Lagrange multiplier based on the principle of minimum deformation energy, and simplifies the special-shaped 3D surface in aircraft structure to a plane. However, the actual aircraft structure contains a large number of special-shaped surfaces, and the MPA method cannot accurately distribute the loads on these complex special-shaped surfaces, affecting the accuracy of strength analysis. This paper developed a new 3D load distribution method based on multi-dimensional Lagrange multipliers (MDLM), which can simultaneously achieve an efficient and accurate distribution of surface aerodynamic loads and inertial loads in all directions. Typical numerical cases showed that when an aircraft structure model is a plane, this MDLM method converges to the traditional MPA method. For 3D special-shaped surfaces, the average error of this MDLM method is 0.77–2.28%, which is significantly smaller than the average error of the traditional MPA method (3.30–7.40%).

Funder

National Natural Science Foundation of China

Dalian High-Level Talent Innovation Program

Dalian Science and Technology Innovation Fund

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3