Application of Smoothed Finite Element Method to Two-Dimensional Exterior Problems of Acoustic Radiation

Author:

Chai Yingbin1,Gong Zhixiong123,Li Wei123ORCID,Li Tianyun123,Zhang Qifan123,Zou Zhihong123,Sun Yangbin123

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China

2. Hubei Key Laboratory of Naval Architecture & Ocean Engineering Hydrodynamics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, P. R. China

3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai 200240, P. R. China

Abstract

In this work, the smoothed finite element method using four-node quadrilateral elements (SFEM-Q4) is employed to resolve underwater acoustic radiation problems. The SFEM-Q4 can be regarded as a combination of the standard finite element method (FEM) and the gradient smoothing technique (GST) from the meshfree methods. In the SFEM-Q4, only the values of shape functions (not the derivatives) at the quadrature points are needed and the traditional requirement of coordinate transformation procedure is not necessary to implement the numerical integration. Consequently, no additional degrees of freedom are required as compared with the original FEM. In addition, the original “overly-stiff” FEM model for acoustic problems (governed by the Helmholtz equation) is properly softened due to the gradient smoothing operations implemented over the smoothing domains and the present SFEM-Q4 possesses a relatively appropriate stiffness of the continuous system. Therefore, the well-known numerical dispersion error for Helmholtz equation is decreased significantly and very accurate numerical solutions can be obtained by using relatively coarse meshes. In order to truncate the unbounded domains and employ the domain-based numerical method to tackle the acoustic radiation in unbounded domains, the Dirichlet-to-Neumann (DtN) map is used to ensure that there are no spurious reflections from the far field. The numerical results from several numerical examples demonstrate that the present SFEM-Q4 is quite effective to handle acoustic radiation problems and can produce more accurate numerical results than the standard FEM.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3