Parametric Reliability Sensitivity Analysis Using Failure Probability Ratio Function

Author:

Wei Pengfei1,Lu Zhenzhoug2

Affiliation:

1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, P. R. China

2. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, P. R. China

Abstract

Reducing the failure probability is an important task in the design of engineering structures. In this paper, a reliability sensitivity analysis technique, called failure probability ratio function, is firstly developed for providing the analysts quantitative information on failure probability reduction while one or a set of distribution parameters of model inputs are changed. Then, based on the failure probability ratio function, a global sensitivity analysis technique, called R-index, is proposed for measuring the average contribution of the distribution parameters to the failure probability while they vary in intervals. The proposed failure probability ratio function and R-index can be especially useful for failure probability reduction, reliability-based optimization and reduction of the epistemic uncertainty of parameters. The Monte Carlo simulation (MCS), Importance Sampling (IS) and Truncated Importance Sampling (TIS) procedures, which need only a set of samples for implementing them, are introduced for efficiently computing the proposed sensitivity indices. A numerical example is introduced for illustrating the engineering significance of the proposed sensitivity indices and verifying the efficiency and accuracy of the MCS, IS and TIS procedures. At last, the proposed sensitivity techniques are applied to a planar 10-bar structure for achieving a targeted 80% reduction of the failure probability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3