Hybrid Uncertain Analysis for Exterior Acoustic Field Prediction with Interval Random Parameters

Author:

Chen Ning1,Yu Dejie1,Xia Baizhan1,Beer Michael234

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, P. R. China

2. Institute for Computer Science in Civil Engineering, Leibniz University Hannover, Callinstr. 34, 30167 Hannover, Germany

3. Institute for Risk & Uncertainty, School of Engineering, University of Liverpool, Brodie Tower, Brownlow Street, Liverpool L69 3GQ, UK

4. School of Civil Engineering & Shanghai Institute of Disaster Prevention and Relief, Tongji University, P. R. China

Abstract

For exterior acoustic field problems that lack sufficient information to construct precise probability distributions, an interval random model is introduced to deal with the uncertain parameters. In the interval random model, the probability variables are employed to treat the uncertain parameters, whereas some distribution parameters of random variables are modeled as interval variables instead of precise values. Based on the interval random model, the interval random finite element equation for exterior acoustic fields is established and a hybrid uncertain analysis method is presented to solve the exterior acoustic field problem with interval random variables. In the presented method, by temporarily neglecting the uncertainties of interval variables, a first-order stochastic perturbation method is adopted to calculate the expectation and the variance of the response vector. According to the monotonicity of the expectation and variance of the response vector with respect to the interval variables, the lower and upper bounds of the expectation and variance of the response vector can be calculated by the vertex method. In addition, in order to ensure accuracy of the proposed method, the subinterval technique is introduced and investigated. The numerical example of a square flexible shell model is presented to demonstrate the effectiveness of the proposed method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3