Phase-Field Modeling of a Single Horizontal Fluid-Driven Fracture Propagation in Spatially Variable Rock Mass

Author:

Chen Fuyong12,Zhou Shuwei13,Zhuang Xiaoying13,Zhang Wengang425,Wu Renjie2

Affiliation:

1. Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz University Hannover, Hannover 30167, Germany

2. School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China

3. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, P. R. China

4. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, P. R. China

5. National Joint Engineering Research Center of Geohazards, Prevention in the Reservoir Areas, Chongqing University, Chongqing 400045, P. R. China

Abstract

Hydraulic fracture propagation directly affects the recovery rate of resources when hydraulic fracturing techniques are applied to exploiting unconventional oil and gas resources. Rock mass is the main engineering medium of hydraulic fractures and is generally considered to be of considerable spatial variability in physical and mechanical properties. Understanding the irregular propagation mechanism of hydraulic fracture in spatial heterogeneity rock mass is essential and beneficial to assess the recovery rate of oil or gas resources. This work develops a random phase-field method (RPFM) to simulate the irregular propagation of hydraulic fracture in spatially variable rock mass. The spatial variability of elastic modulus is characterized by the random field theory. Utilizing the advantages in modeling complex crack patterns and crack kinematics, the phase-field method (PFM) is used to predict the fracture propagation. Various anisotropic random fields of elastic modulus with different coefficients of variance and scales of fluctuation are generated via the Cholesky decomposition method. The random fields are subsequently implemented into COMSOL Multiphysics and combined with the PFM to investigate the hydraulic fracture propagation. This study investigates the influence of spatial variability of elastic modulus on the peak fluid pressure, fracture length, fracture area and fracture shape. It reveals that the spatial variability of elastic modulus has a significant influence on the propagation of hydraulic fractures, and the results provide a preliminary reference for hydraulic fracturing design with consideration of spatial variability of rock mass.

Funder

Natural Science Foundation of Chongqing

Chongqing Natural Science Foundation

China Scholarships Council

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3