A Novel Gap Element for the Coupling of Incompatible Interface in Component Mode Synthesis Method

Author:

Li Ruoyu1,Yao Jianyao12ORCID,Wang Linlin1,Jiang Chen3,Wu Fei4,Hu Ning12

Affiliation:

1. College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

2. Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing 400044, P. R. China

3. Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410076, P. R. China

4. College of Engineering and Technology, Southwest University, Chongqing 400715, P. R. China

Abstract

The component mode synthesis (CMS) methods are often utilized for modal analysis to investigate the vibration characteristics of the complex structures which are commonly divided into several substructures. However, non-matching finite element meshes may occur at the interfaces between components and virtual gaps are easily produced along the curved interfaces, which limit the application of CMS and lead to larger numerical errors for vibration analysis. To overcome the problem, a novel gap element method (GEM) is employed into a free-interface CMS method in this paper, where both displacements and forces of the nodes on the incompatible interfaces are introduced by two independent Lagrange multipliers to enforce the compatibility conditions. Two-dimensional numerical examples are given to validate the effectiveness of the proposed method. The results of natural frequencies and modal shapes obtained using the proposed method agree very well with the ones obtained using full finite elements model, no matter the gaps along the interface exist or not. The influence of the number of nodes on the non-matching interfaces on the accuracy of frequencies is also discussed.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Chongqing Research Program of Basic Research and Frontier Technology

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3