An Improved Radial Basis Function Neuron Network Based on the l1 Regularization

Author:

Kang Yunling1,Liu Manxi2,You Guoqiao1ORCID,Liu Guidong1

Affiliation:

1. School of Mathematics, Nanjing Audit University, Nanjing 211815, P. R. China

2. School of Statistics and Data Science, Nanjing Audit University, Nanjing 211815, P. R. China

Abstract

The radial basis function neural network (RBFNN) is a widely used tool for interpolation and prediction problems. In this paper, we propose to improve the traditional RBFNN by automatically identifying core neurons in the hidden layer, based on the [Formula: see text] regularization. Our proposed approach will greatly reduce the number of neurons required, which will save the memory and also the computational cost. To determine the radial parameter [Formula: see text] in the RBFs, we propose to use the [Formula: see text]-fold cross-validation method. Moreover, the principal component analysis (PCA) method is used to reconstruct the distance between samples for high-dimensional data sets. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach.

Funder

Natural Science Foundation of Jiangsu Province

Qinglan Project of Jiangsu Province of China

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3