A Blended Compact Difference (BCD) Method for Solving 3D Convection–Diffusion Problems with Variable Coefficients

Author:

Ma Tingfu1ORCID,Ge Yongbin1ORCID

Affiliation:

1. Institute of Applied Mathematics and Mechanics, Ningxia University, Yinchuan 750021, P. R. China

Abstract

In this study, we present a fourth-order and a sixth-order blended compact difference (BCD) schemes for approximating the three-dimensional (3D) convection–diffusion equation with variable convective coefficients. The proposed schemes, where transport variable, its first and second derivatives are carried as the unknowns, combine virtues of compact discretization, fourth-order Padé scheme and sixth-order combined compact difference (CCD) scheme for spatial derivatives and can efficiently capture numerical solutions of linear and nonlinear convection–diffusion equations with Dirichlet boundary conditions. The fourth-order scheme requires only 7 grid points and the sixth-order scheme requires 19 grid points. The distinguishing feature of the present method is that methodologies of explicit compact difference and implicit compact difference are blended together. The truncation errors of the two difference schemes are analyzed for the interior grid points, respectively. Simultaneously, a sixth-order accuracy scheme is proposed to compute the first and second derivatives of the grid points on boundaries. Finally, the presented methods are applied to several test problems from the literature including linear and nonlinear problems. It is found that the presented schemes exhibit good performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningxia Province

National Key Research and Development Program of Ningxia

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3