A HIERARCHICALLY SUPERIMPOSING LOCAL REFINEMENT METHOD FOR ISOGEOMETRIC ANALYSIS

Author:

HAH ZOO-HWAN1,KIM HYUN-JUNG2,YOUN SUNG-KIE1

Affiliation:

1. Department of Mechanical Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu Daejeon 305-701, Republic of Korea

2. Korea Atomic Energy Research Institute, 989-111, Daedoek-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea

Abstract

In isogeometric analysis, the tensor-product form of Nonuniform Rational B-spline (NURBS) represents spline surfaces. Due to the nature of the tensor-product, the local refinement in isogeometric analysis has many issues to be resolved. Attempts have been made in this regard, such as T-splines and hierarchical approaches. In this work, a local refinement method for isogeometric analysis based on a superimposing concept is proposed. Local refinements are performed by superimposing hierarchically-created finer overlay meshes onto the regions of high error rather than a change of analysis basis (from NURBS to some other spline space). To employ the superimposing concept as a local refinement strategy in isogeometric analysis, a hierarchical framework to construct overlay meshes is developed, and compatibility conditions across the interfacial boundaries of different levels of meshes is discussed. Through numerical examples, the effectiveness and validity of the proposed method are demonstrated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Generation of 3D Trimmed Elements for NURBS-Based Isogeometric Analysis;International Journal of Computational Methods;2018-10-12

2. AC0/G1multiple patches connection method in isogeometric analysis;Applied Mathematical Modelling;2015-08

3. Isogeometric analysis of topologically complex shell structures;Finite Elements in Analysis and Design;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3