Affiliation:
1. http://<www.tongji.edu.cn> Shanghai Automotive Wind Tunnel Center, Tongji University, 4800 Cao An Rd., Jiading, Shanghai 201804, China
Abstract
A least-squares meshfree collocation method is presented. The method is based on the first-order differential equations in order to result in a better conditioned linear algebraic equations, and to obtain the primary variables (displacements) and the dual variables (stresses) simultaneously with the same accuracy. The moving least-squares approximation is employed to construct the shape functions. The sum of squared residuals of both differential equations and boundary conditions at nodal points is minimized. The present method does not require any background mesh and additional evaluation points, and thus is a truly meshfree method. Unlike other collocation methods, the present method does not involve derivative boundary conditions, therefore no stabilization terms are needed, and the resulting stiffness matrix is symmetric positive definite. Numerical examples show that the proposed method possesses an optimal rate of convergence for both primary and dual variables, if the nodes are uniformly distributed. However, the present method is sensitive to the choice of the influence length. Numerical examples include one-dimensional diffusion and convection-diffusion problems, two-dimensional Poisson equation and linear elasticity problems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献