Affiliation:
1. Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
2. Department of Mathematics Sciences Lawton, Cameron University, OK 73505, USA
Abstract
In this paper, we present a local convergence analysis of some iterative methods to approximate a locally unique solution of nonlinear equations in a Banach space setting. In the earlier study [Babajee et al. (2015) “On some improved harmonic mean Newton-like methods for solving systems of nonlinear equations,” Algorithms 8(4), 895–909], demonstrate convergence of their methods under hypotheses on the fourth-order derivative or even higher. However, only first-order derivative of the function appears in their proposed scheme. In this study, we have shown that the local convergence of these methods depends on hypotheses only on the first-order derivative and the Lipschitz condition. In this way, we not only expand the applicability of these methods but also proposed the theoretical radius of convergence of these methods. Finally, a variety of concrete numerical examples demonstrate that our results even apply to solve those nonlinear equations where earlier studies cannot apply.
Funder
King Abdulaziz University
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献