Simulation of Turbulent Flows in River Confluences and Meandering Channels with a Cartesian 3D Free Surface Hydrodynamic Model

Author:

Ramón C. L.1,Prats J.23,Rueda F. J.4

Affiliation:

1. Water Research Institute, University of Granada, Ramón y Cajal St., 4 Granada 18003, Spain

2. National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), 3275 Cézanne Rd., CS 40061 Aix-en-Provence Cedex 5, 13182, France

3. Flumen Institute Technical University of Catalonia Jordi Girona, St., 1-3 Barcelona 08034, Spain

4. Water Research Institute University of Granada Ramón y Cajal St. Granada 18003, Spain

Abstract

Three-dimensional primitive equations (3DPE) become a reasonable approach in hydrodynamics in terms of computational costs when the length of the computational domain and/or computational time scales increases. However, given the simplified set of equations used in the analysis, results with 3DPE-based models are expected to be approximate and before attempting to reproduce complex natural flows they first need to be validated against more simple flows observed in laboratory settings. Here, the validity of Cartesian free-surface hydrodynamic models to reproduce three turbulent flows characteristic of river environments is tested: (1) the development of shallow mixing layers, (2) flow pass a lateral cavity and (3) flow in open channel with mild curvature. Errors between measured and modeled values were generally less than 10%, proving their validity to reproduce such turbulent flows and their potential for simulations in more complex natural environments, such it is the case of the confluence between the Ebro and Segre rivers into Ribarroja reservoir.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3