Affiliation:
1. Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
Abstract
In this paper, a multiscale computational formulation is developed for modeling two- and three-dimensional gradient elasticity behaviors of heterogeneous structures. To capture the microscopic properties at the macroscopic level effectively, a numerical multiscale interpolation function of coarse element is constructed by employing the oversampling element technique based on the staggered gradient elasticity scheme. By virtue of these functions, the equivalent quantities of the coarse element could be obtained easily, resulting in that the material microscopic characteristics are reflected to the macroscopic scale. Consequently, the displacement field of the original boundary value problem could be calculated at the macroscopic level, and the corresponding microscopic gradient-enriched solutions could also be evaluated by adopting the downscaling computation on the sub-grids of each coarse element domain, which will reduce the computational cost significantly. Furthermore, several representative numerical experiments are performed to demonstrate the validity and efficiency of the proposed multiscale formulation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
China Postdoctoral Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献