Improvements of Rackwitz–Fiessler Method for Correlated Structural Reliability Analysis

Author:

Zhou Sheng-Tong1ORCID,Xiao Qian1,Zhou Jian-Min1,Li Hong-Guang2

Affiliation:

1. School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, P. R. China

2. Institute of Vibration Shock and Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

Rackwitz–Fiessler (RF) method is well accepted as an efficient way to solve the uncorrelated non-Normal reliability problems by transforming original non-Normal variables into equivalent Normal variables based on the equivalent Normal conditions. However, this traditional RF method is often abandoned when correlated reliability problems are involved, because the point-by-point implementation property of equivalent Normal conditions makes the RF method hard to clearly describe the correlations of transformed variables. To this end, some improvements on the traditional RF method are presented from the isoprobabilistic transformation and copula theory viewpoints. First of all, the forward transformation process of RF method from the original space to the standard Normal space is interpreted as the isoprobabilistic transformation from the geometric point of view. This viewpoint makes us reasonably describe the stochastic dependence of transformed variables same as that in Nataf transformation (NATAF). Thus, a corresponding enhanced RF (EnRF) method is proposed to deal with the correlated reliability problems described by Pearson linear correlation. Further, we uncover the implicit Gaussian copula hypothesis of RF method according to the invariant theorem of copula and the strictly increasing isoprobabilistic transformation. Meanwhile, based on the copula-only rank correlations such as the Spearman and Kendall correlations, two improved RF (IRF) methods are introduced to overcome the potential pitfalls of Pearson correlation in EnRF. Later, taking NATAF as a reference, the computational cost and efficiency of above three proposed RF methods are also discussed in Hasofer–Lind reliability algorithm. Finally, four illustrative structure reliability examples are demonstrated to validate the availability and advantages of the new proposed RF methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi, China

Opening Foundation of the State Key Laboratory of traction power, Southwest Jiaotong University

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3