Text Classification of Modern Mongolian Legal Documents Using BERT Models

Author:

Khaltarkhuu Garmaabazar1ORCID,Batjargal Biligsaikhan2ORCID,Maeda Akira3ORCID

Affiliation:

1. Graduate School of Information Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

2. Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

3. College of Information Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

Abstract

This paper investigates the application of deep learning-based natural language processing techniques in modern Mongolian legal documents. In particular, we explore several methods that apply Bidirectional Encoder Representations from Transformers (BERT) models for classifying modern Mongolian legal documents. Based on our findings, we propose BERT-based models called LEGAL-BERT-Mongolian. We demonstrated two variants of LEGAL-BERT-Mongolian, i.e., uncased-LEGAL-BERT-Mongolian and cased-LEGAL-BERT-Mongolian, for classifying modern Mongolian legal documents. The uncased-LEGAL-BERT-Mongolian model achieved the best results, with a precision of 0.91, recall of 0.87, and F1 score of 0.89, whereas the cased-LEGAL-BERT-Mongolian model achieved a precision of 0.87, recall of 0.83, and F1 score of 0.85.

Funder

JSPS KAKENHI

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3