Affiliation:
1. Shenzhem Institute of Information Technology, Shenzhen 518172, P. R. China
2. P403 Graduate House, The University of Hong Kong, Pokfulam Road, Hong Kong
Abstract
Carbon nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Their interface significantly affects the properties of the composites. Here, we show that three kinds of interfaces between crystalline Ni and CNTs exist, namely, ordered, distorted, and disordered. They presented lattice states of Ni atoms near the interface, whereas the (111) Ni plane was parallel to the CNTs' surface and appeared apart in a smaller or bigger angle. The coherent face-centered cubic (f.c.c)/hexagonal close-packed structure (h.c.p) boundary was formed between the crystalline Ni and CNTs at the ordered interface, in which the match was (111) Ni //(0001) Carbon . We suggested a dislocation model for the coherent interface. The model explained why the angle between (200) Ni and the CNTs' inner surface was 52.9° rather than the theoretical value of 54.75°. The [Formula: see text] dislocation was formed to fit the coherent relationship. Thus, Ni lattice shrinkage occurred. Further study indicated that the formation mechanism of crystalline Ni in CNTs was through heterogeneous nucleation on the inner wall surface and growth of the crystal nucleus.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献