On the performance of carbon fiber structural batteries with temperature

Author:

Du Chunzhi1ORCID,Zhu Shaoqian2ORCID

Affiliation:

1. School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P. R. China

2. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, P. R. China

Abstract

Carbon fiber structural batteries, which combine structural and functional properties, have good energy storage capacity while bearing loads have received attention from scholars at home and abroad in recent years as a new type of energy storage device. However, in the process of use, temperature changes will lead to the occurrence of thermal stresses, which may cause structural failure under multiple cycles. In this paper, the thermal-stress coupled model of structural batteries was established first using the temperature and thermal stress models of structural batteries, considering the heat exchange with the external environment of structural batteries. Then based on the coupled model, the thermal stress in the structural battery was simulated and analyzed in COMSOL considering different charge and discharge rates and ambient temperatures of the structural batteries. The results show that: (1) The higher the charging and discharging rates, the higher the temperature of the structural battery, resulting in greater thermal stress. (2) The higher the ambient temperature of the structural battery, the longer its discharge time and the lower the voltage at which discharge terminates, which is beneficial for the electrochemical performance of the battery. But the higher the ambient temperature, the greater the temperature change inside the structural battery, which is not conducive to the mechanical performance of the structural battery. This study can provide reference for the safety analysis of structural batteries in thermal environments.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3