A green synthesis of CISe nanocrystal ink and preparation of quantum dot sensitized solar cells

Author:

Guo Tianyu1,Zhang Hui1,Chen Guifeng1,Long Boling1,Xie Luxiao1,Cheng Zishuang1,Xie Xinjian1,Liu Gudong1,Li Wei2

Affiliation:

1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, P. R. China

2. School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

Abstract

I–III–VI chalcopyrite copper indium selenium is one of therepresentatives of the light absorbing layer material, and is often used for a thin-film solar cell. With the development of nano-technology, CuInSe2 quantum dots (CISe QDs) which have intermediate belt and excitation effect characteristics are applied to the solar cells as an alternative of Cd- or S-based QDs. Most conventional methods for the synthesis of CISe QDs using solution involve the dangerous and environmentally unfriendly Oleylamine or phosphine coordination compounds. In this work, CISe QDs were synthesized by a green, safe and low-temperature method in triethylene glycol. Through controlling the growth temperature and time, the diameter can be adjusted from 3[Formula: see text]nm to 10[Formula: see text]nm. The samples exhibit quantum confinement effect, and have a controllable optical band gap. QDs were deposited on the surface of ZnO nanorods to obtain a photoanode, which were fabricated into quantum dot-sensitized solar cells. The device exhibits size-dependent performance. And the open circuit voltage shows a fluctuation up to 0.26[Formula: see text]V. When the size is 4[Formula: see text]nm, the short circuit current density is the largest (15[Formula: see text]mA/cm2).

Funder

National Natural Science

the Ministry of Education Chunhui Plan

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3