High dielectric constant and low dielectric loss of Y/Mn co-doped BST@ZrO2/PVDF composite films for wearable capacitor applications

Author:

Zhang Jingru1ORCID,Xu Ruoxin1,Han Xiao1,Zhang Zhiang1,Zhao Lili1,Cui Bin2,Zhai Chunxue1,Lei Xiaoyi1

Affiliation:

1. School of Information Science and Technology, Northwest University, Xi’an 710127, P. R. China

2. College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China

Abstract

In order to develop infinite capacitive materials with high dielectric constant and low dielectric loss, influences of Y/Mn co-doping and ZrO2 coating on the dielectric properties of barium strontium tinanate/polyvinylidene fluoride (BST/PVDF) composite films were systematically investigated with fixing Y concentration as 0.3 at.% and varying Mn concentration from 1 at.% to 4 at.%. The experimental results show that the dielectric constant of BST@ZrO2/PVDF composite increases by 50% relative to BST/PVDF and the dielectric loss is evidently depressed. In comparison with BST@ZrO2/PVDF sample, furthermore, the dielectric constant of Y/Mn co-doped BST@ZrO2/PVDF samples increases by about 60% and the dielectric loss further reduces at 1 kHz. The promoted dielectric performances of composite originate from the space charge separation formed by Y/Mn co-doping and the limitation of electronic mobility by coated ZrO2. Y/Mn co-doped BST@ZrO2/PVDF composite film with 3% Mn has a dielectric constant of 37.9, a dielectric loss of 0.0117, superior dielectric temperature stability (3.1% from −5[Formula: see text]C to 45[Formula: see text]C at 1 kHz), and a discharged energy density of 5.67 J/cm3 at 600 kV/cm. The simultaneous optimization of dielectric constant and dielectric loss of BST/PVDF composite is realized in this experiment. The superior dielectric temperature stability suggests the application potential of Y/Mn co-doped BST@ZrO2/PVDF as wearable capacitors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3