Magnetically-doped polydimethylsiloxane for artificial muscle applications

Author:

Ventura Erik1,Oztan Cagri2,Palacios Diego1,Isabel Vargas Irene1,Celik Emrah2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146, USA

2. Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA

Abstract

Artificial muscle actuators demonstrate great potential for improving the quality of life. Recently, polymer muscle actuators have attracted attention due to their inexpensive and highly versatile methods of fabrication along with decent mechanical properties that can mimic those of natural muscles. The aim of this research is to investigate the usability of a magnetite-doped polymer powder, polydimethylsiloxane (PDMS), for artificial muscle actuators through an inexpensive method of production. PDMS samples doped with different levels of magnetite were fabricated using molds that were produced by additive manufacturing. Subsequently, the samples were magnetically and mechanically characterized by investigation of strength, elastic modulus, failure strain and permittivity, which are vital to meet the load capacity. The test results demonstrated that the mechanical and magnetic properties could be tailored as a function of doping level. Matching the mechanical response of these artificial components to those of artificial muscles will reduce the residual stresses, enhance the artificial muscle life and allow wider use of these materials for biomedical applications. This research rendered fabrication of molds possible for various applications where geometric customization of the actuator is required to meet endure severe loads, thanks to the freeform nature of additive manufacturing.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3