Affiliation:
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China
Abstract
With the rise of flexible electronics, flexible rechargeable batteries have attracted widespread attention as a promising power source in new generation flexible electronic devices. In this work, [Formula: see text]-Fe2O3 nanorods grown on carbon cloth have been synthesized through a facile hydrothermal method as binder-free electrode material. The electrochemical performance measurements show that [Formula: see text]-Fe2O3 nanorods possess high specific capacitance and specific capacity retention of 119% after 100 cycles. The combination of low-cost and excellent electrochemical performance makes [Formula: see text]-Fe2O3 nanorods promising anode materials for sodium-ion batteries.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献