Synthesis of narrow-band red-emitting SrLiAl3N4:Eu2+ phosphor and the study of its influencing factors on luminescence performance

Author:

Yang Yuxiao1,Lu Zicheng1,Liu Yiheng1,Wang Chen1,Yan Bing12,Wang Yongqian1ORCID

Affiliation:

1. Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, 388# Lumo Road, Wuhan 430074, P. R. China

2. School of Environmental Studies, China University of Geosciences, Wuhan 430074, P. R. China

Abstract

In this paper, safer raw materials were used to synthesize SrLiA13N4:Eu[Formula: see text] phosphors under high purity nitrogen gas by high-temperature solid-state method, and the effects of activator doping concentration, calcination temperature, calcination time and matrix lattice cation substitution on their luminescence performance were studied. All the samples can emit red light effectively excited by ultraviolet or blue light, and the narrow-band red emission peak is at [Formula: see text]651 nm. Energy Dispersive Spectroscopy (EDS) results show that the Eu[Formula: see text] element has been successfully doped and uniformly distributed. The X-ray powder diffraction (XRD) pattern showed that impurities of AlN and SrO were present in the synthesized samples, and the impurity phase was significantly reduced or eliminated with the increase of calcination temperature. The relationship between luminescence intensity of phosphor and Eu[Formula: see text] doping concentration indicates that with the increase of Eu[Formula: see text] doping concentration, the luminescence intensity of powder first increases and then decreases, and the optimal doping concentration is 0.02. Concentration quenching will occur if the doping amount of Eu[Formula: see text] continues to increase. The addition of Ca makes it replace Sr in the crystal lattice, resulting in the reduction of field force in the lattice expansion crystal, resulting in the reduction of luminescence intensity, the red shift of emission peak, and the increase of half height and width. The results exhibit that SrLiAl3N4:Eu[Formula: see text] may be a more suitable phosphor than CaLiAl3N4:Eu[Formula: see text] as a narrow-band red component in white LEDs.

Funder

National Natural Science Foundation of China Youth Fund Project

Hubei Key Laboratory of Forensic Science (Hubei University of Police

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3