Comprehension of defect states induced by fluorine ions substituting for oxygen ions in Sr3MgSi2O8−δF2δ by first principles calculation

Author:

Zhang Meng,Song Ting1,Zhu Hancheng2,Zhang Xinyang3

Affiliation:

1. School of Science, Shandong Jiaotong University, 5001 Haitang Road, Jinan 250357, P. R. China

2. Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, 5268, Renmin Street, Changchun 130024, P. R. China

3. Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, P. R. China

Abstract

Study of the defect states in the luminescent host materials has always been a significant point in improving the light emitting devices performances. To afford candidate luminescence host materials, defect states in Sr3MgSi2O[Formula: see text]F[Formula: see text] induced by substitution of fluorine ions (F[Formula: see text] substituting for oxygen ions (O[Formula: see text] have been studied through first principles calculation and the related results are presented in this work. First, chemical formulas have been confirmed to be Sr3MgSi2O[Formula: see text]F[Formula: see text] through calculations of the possible crystal structures with increasing F[Formula: see text] substituting for O[Formula: see text] concentrations while band gap values decrease from 5.889 eV to 5.328 eV. When the fluorine ion substituting concentration [Formula: see text] reached 0.5, a new defect state near 3.002 eV in the band gap appeared and it can be concluded that the defect state originates from the two fluorine ions bonding to the same Si–O–F2 group. In addition, there arose a new absorption band in the visible region and it can also be attributed to the introduced color [Formula: see text] center in Sr3MgSi2O[Formula: see text]F. The aforementioned results show that tiny doping amounts of fluorine ions could make Sr3MgSi2O[Formula: see text]F[Formula: see text] suitable for luminescence host materials.

Funder

Shandong Jiaotong University of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3